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I. .INTRODUCTION

1.1 Object and Scope :§§

5 ‘ A . _.‘fE;e development of a systematic

numerical procedure for determiaiﬁfhfhe displacements, strains, and stresses
within a plane continuux;w :iZEn certain regions have been strained beyonq an
elastic yileld limit. Such a procedure should make possible the observation
of the development of the stress and strain patterns around regions of high
stress intensity, such._as regions-areunrd—neteles wlloles ymantuwpeintsmofimGOlLams
cenbrated-doads .

The procedure is restricted to plane, static problems; and the
example problems are further restricted to plane strain conditions. The pro-
cedure itself is applicable to plane stress problems if the relations between
stress and strain for plane stress conditions are substituted for those of
plane strain. The material of the continuum is considered to be isotropic
and elastic-perfectly-plastic and the problems are solved for continuously
increasing external loads. Unloading from a plastically strained state is
not considered.

The numerical procedure is essentially a relaxation technique
applied to a discrete phyéical model composed of suitably arranged stress
points and mass points. Plastic ylelding and flow in the solid is charac~
terized by the corresponding yielding and flow of the stress points of the
model. e lIntroduction of the discrete model reduces the problem of the
continuum with an infinite number of degrees of freedom to a problem in

particle mechanics with a finite number of degrees of freedom. The primary

advantage of such a technique is that i1t makes possible the solution of
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problems not tractable by ordinary mathemati¢al analysis, particularly
problems involving partial loadings and éomplicated boundary conditions. The
basic disadvantage of the discrete model approach is its very.finiteness-i
stresses and displacements are defined only at a finite number of points.

Hence frequently the finite model can furnish only a rough.quantitative

measuie of the true but unknown solution in the continuum. To gain some notion
of the accuracy of the model used in this investigatien, a2 problem in plane
elasticity for which there is an analytic solution is solved by using the

model and the results compared to the analytic solution.

Once the level of external loading has been raised to a sufficiently
high level, the more highly stressed regions of the continuum begin to yield,
or flow plastically. The initiation of yielding is determined by the Mises-
Hencky yield criterion. Thereafter, yielded regions are assumed to obey the
plastic stress-strain relations postulated by the Prandtl-Reuss theory. Two
examples of problems wherein plastic flow has ‘taken place over a finite region
are included to demonstrate the application of the numerical procedure.

The entire procedure for handliﬁg plane problems of contained
plastic flow in elastic-perfectly-plastic continua has been coded for use on
the IBM 7090 digital computer. Only the two numerical solutions mentioned
above are included in the thesis; an extensive investigation of the various
problems of interest in contained plastic flow falls outside the scope of

this work.

1.2 Historical Notes

This brief review of the literature 1s by no means intended to be
complete. Only a few of the more important publications related to the present
study are discussed. .Several of these references (6), (8), (15), (22)l contain

1 Numbers in parentheses refer to corresponding entries in the Bibliography.
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extensive bibliographies or footrnotes through which more detalled access to
the literature may be obtained.

The idea of replacing plane elastic continua with discrete models
began to attract researchers' interest in the early. 1940's--about the same
time that Southwell (19) (20) developed efficient and practical relaxational
techniques for the solution of highly complex systems. It is not at all sur-
prising that the development of finite models should have awaited more
efficient methods of computation, since by their very nature solutions de~
termined with the use of models invelve systems with a large number of

simultaneous equations. Hrennikoff (10) and McHenry (13) were perhaps among

the earliest of those who introduced "frameworks" or-"lattice analogies" to

solve problems in plane elasticity. Using hexagonal and square patterns as
the basic module in the discrete model, Austin (3) and Dauphin (5) made
informative comparisons of the model solution to the exact analytic solution
for several problems in plane elasticity. Newmark (15) gives é good dis 's~-
sion of the use of models in several areas of structural analysis.

More recently, there has been a renewed interest in the development
of models; this is partly prompted by more efficient computational devices.
The advent of high-speed digital computers has induced many analysts to seek
discrete models suitable for digital computation. The work of CGlough (4)
and Gaus (7) is typical of the model approach now being adopted in order to
solve continuum problems on computers. It is interesting to note that none
of the writers above make any mention of attempts to extend their models
beyond the elastic range. Schnobrich (18) has indicated that considerations
for future extension into plastic behavior influenced the selection of his
model, though his work presents only elastic results.

The scientifi; study of the theory of plasticity seems to be much

older than any serious study of finite models, for it extends back at least



e

to Coulomb and his study of yielding in soils in 1773. -Any number of readable
texts in the elementary theory (8), (9), (16), {17) are available, though the
presentation here follows most closely that in Prager and Hodge (17) and
Hoffman and Sachs (9)o The only successful numerical solutions of problems

in contained plastic flow known to the author are those presented by. Allen

and Southwell (1) and Jacobs (11). Their solutions are obtained by a rather
tedious manual relaxation technique which yields values of the stress function
from which the stresses are computed.

In summary.then, it appears that both the theory of plasticity and
the theory of models have attracted the efforts of able researchers, thoﬁgh
there have been few, if any, attempts to apply the theory directly to a
discrete model. Accordingly, it is the purpose of this investigation to
develop a numerical procedure for solving problems of contalned plastic fléw

with the use of a discrete model.

1.3 Notation

The following notation has been adopted for use in this thesis.

X direction of axis

y direction of axis

z direction of axis (perpendicular to the plane of analysis)
u displacement in x direction

v dispiacement in y direction

n,h displacement in horizontal direction

g, v displacement in vertical direction

B Young's modulus

v Poisson's ratio

G shear modulus = Ezf%;y
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bulk modulus = SZE%EVT

yield stress in simple shear
total stress tensor
spherical stress tensor
deviator stress tensor

total strain tensor
spherical strain tensor

deviator strain tensor
L

normal component of*E

mean normal stress = (GX tog cZ)

3

normal component of SD
normal component of SD
normal component of SD
mean normal strain =

normal component of E

in x direction = o - s

in y direction =0 _ - s

normal component
principal normal
principal normal
principal normal
principal normal
principal normal

principal normal

first invariant =

second invariant

third invariant

¥

in z. direction = oz -8
1L
'5— (€X+ €y+ ez)
D in x direction = € - ¢
D, R .

in y direction = ey -e

of ED in z direction = €, - e

component of stress deviation

component
component
component
component

component

of

of

S, + s, + s

2

PN

% (si + sg + 8

3

(Si + s§‘+ s

stress
stress
strain
strain

strain

2
3 )
3
3/

deviation.

. deviation

deviation

deviation

deviation

Te,

work performed by stresses during a plastic distortion
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axial force component at a stress point

shear force component at a stress point

body . force per unit volume

body force per unit volume

moment of inertia of a unit width of the reinforcing frame
cross-sectional area of a unit width of the reinforcing‘frame
element of the total stress tensor

element of the total stress tensor

element of the total stress tensor

element of the total stress tensor

element of the total stress tensor

element of the total stress tensor

principal normal stress

principal normal stress

principal normal stress

element of the total strain tensor

element of the total strain tensor

element of the total strain tensor
element of the total strain tensor

element of the total strain tensor

element of the total strain tensor

principal normal strain
principal normal strain
principal normal strain

factor of proportionality between stress and strain rate,
horizontal or wvertical distance between mass points
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distance along x or y.axis between mass points
level of external load at which first yielding begins
flexibility coefficient

concentrated external load
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II. DESCRIPTION OF THE. MODEL

2.1 Criteria for Selection of a Model

Historically, there ﬁave beéh at least two distinct criteria for
selecting a finite mechanical model to replace a continuum. Hrennikoff (10)
and Clough (4) béth demand equality of deformdtion between model and continuum
under similar loading conditionsw It is interesting in this regard to quote
Hrennikoff (10).

It is now possible to formulate the basic principle

governing determination of the framework pattern. The

necessary and sufficient condition for egquivalence of

infinitesimal framework and solid material is equality

in deformability of the two...
Hrennikoff!s apphication of .this criterioh ds questidrable, . since several-of hig
simple framework patterns deform as does the continuum only if Poisson's ratio
has the value 1/3. ,Micheil (14) shows, however, that at least for simply
connected regions the values of thé elastic constants do not affect the compu-
tation of the stresses if the boundary-conditions are specified by loading
conditions rather than by displacement conditions. Nevertheless,.any criterion
which restricts the value of a material constant to a specific value cannot
be completely satisfactory for treatment of the most general problems.

A second criterion that is sometimes used in the selection of a
model was mentioned by Newmark (15) and attempted by Gaus (7), and was
explicitly proposed by.Ang (2) in the development of the model which is used
in this thesis. The criterion is thét there be a mathematical consistency
between the finite equations governing the behavior of the model and the dif-
ferential equations governing the behavior of the continuum. By this is meant
that the equations for strains, stresses, equilibrium, and compatibility which

are derived directly from the model should be the same as a set of finite

difference equations of the corresponding differential relations governing the

-8-
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continuum. If this requirement is met the requirement of equal deformability
of a model and the corresponding continuum will automatically be satisfied,
and no restriction need be placed on the value of Poisson's ratio or of any

other elastic constant.

2.2 Description of the Model

The model used in this investigation possesses all the requirements
of the second criterion cited above. The essential characteristics of the
model are shown in Fig. 1, wherein a square grid has been superposed on the
continuum. The mass of the continuum is concentrated at the intersections
pf the grid lines. .Each of the mass points 1s connected through stress points
to the neighboring mass points. Three components of stresses and strains are
defined at each stress point (two perpendicular axial components and a shear
component)., Displacements in the continuum are defined only at the mass
points while stresses and strains are defined only 'at the stress points.
Modifications of the model to include a stiffened rectangular opening are also
shown in Fig. 1.

There are two important advantages of the model configuration
described above. First, all elements of the strain tensor and the stress
tensor are defined at the same point. This is an important characteristic

of the model, especially in extending its use to problems of plasticity.

-Second, horizontal and vertical boundaries of the model contain only mass

points. Thus boundary conditions given in terms of either external tractions
acting on the mass points or prescribed displacements of these mass points

can be applied with equal ease.
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2.3 Relation of the Model to Finite Difference Equations of the Continuum

The material presented in this section follows closely that given
by Ang (2). For purposes of illustration the following notation is used.
Superscript letters refer to stress point locations. Subscript letters x
and y refer to the directions of the axes. Subscript numbers refer to mass
point locations. Displacement components in the x and y -directions are given
by u and v, respectively. Sign convention is that established by Timoshenko
(21). '

", n

The components of the strains at a typical stress point "a" are

defined, with reference to Fig. 1, as follows:

a Uy ™Hys
€& 7 ®
V__ =V
a _ 53 "k :
ey = 5 (1)

a _ 55k VshV3
o) 3]

These strains, which are derived directly from the model, are identical to
the finite difference expressions for the differential strain-displacement

relations of the classical theory for plane continua under small deformations:

-1
% T X
¥ % (2)
ou ., ov
Ty Ty T X

The equation of equilibrium, in the x direction, for a typical

interior mass point at "43" is (see Fig. 2)
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2
| c b a X8
(F - F) + (8, - 8,0) + 75 =0 (3)

where X is the body force per unit volume, The volume of a parallelepiped
2

of unit thickness and area k2 = %? is consgidered concentrated at each mass

point, If the thickness of the model is taken as unity in the z direction,

forces at the stress point "a" are ebtained from the stresses as follows:

a _ a8

Fx = 0% T3

a a o)

B = g . —_ l}.

y y 2 (1)
. S'a = 2. ]

Xy Xy 2

Using Egs. (4) in Eq. (3), the following equation of equilibrium, in terms

of stresses, is obtained:

H1x=0 (58)

L A 4 ¥ =0 (50)

These equilibrium equations, (5a) and (5b), are identical to the
finite difference expressions for the differential equations of equilibrium

governing the corresponding continuum;

o ot
S tX=0 (62)
dg ot
§§X st Y =0 (6b)
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The strains in the model will necessarily satisfy the compatibility
relation, since strain compatibility Is essentially a requirement placed ¢n
the three components of strain in order to insure that the three strain
components correspond to a physically-possible displacement configuration.
The model deals directly with displacements, and the strains are defined
directly in terms of these displacements. Hence, it can be expected that the

strains derived from the displacements of the model will identically satisfy

the compatibility condition.

It is also possible to express the equations of equilibrium in texms
of displacements. This is done below for a linearly elastic solid in plane
strain. Similar relations exist for plane stress conditions. For this
purpose it is necessary to express the three force components at the stress

point "a" in terms of displacements, as follows:

2 _ E Y5u"Mys V53TV B
Fx_m[(l-w i Sl
a CE e oy V53TV s UsyUys) g

ga__E |55 Tshis) e
xy 2(l+v) | 8 . ) 2
Egs. (7) are essentially Hooke's stress-strain relationships for plane strain.
Substitution of these and similar relations for the forces originating at the
other stress points into'Eq. (3) results in the following eguation of equi-

librium in the x direction, in terms of displacements:

B 115#--2111L +u32 :
Ty (1-2v) [g(l'V) (== -2 )+ |

_ U.,~2U, Uy (Ver=Vy )= (V) -V )
(1ay) (R e Wk (g
e} o}
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A similar equation exists for equilibrium in the y direction. Note that this
equation is identically the same as a finite difference equation for the

differential equation of equilibrium, Eq. (9), governing the continuum.
; 2 2 2
B du d™u |, v | _ ,
TE) [_2(1 v) . + (1-2y) ——-—aye t S } +X =0 (9)

X .

2.4 Boundary Conditions

In general, boundary conditions (for either continua or discrete
models) can be of two types: either the forces acting along some boundary
or the displacements on the boundary are prescribed. As pointed out earlier,
either type of condition can be imposed on the model. A few examples are
given below to indicate how boundary conditions are prescribed for the model.

-For greater flexibility and ease in programming, an extra line of\
mass points has been included on each of the four sides of the rectangular
model, as indicated in Fig. 1 by dotted lines. Thus if the continuum being
simulated is to be ten A high and eight A\ wide (demanding a grid of eleven
rows and nine columns), there will actually be thirteen rows and eleven
columns in the complete description of the model. Suppose that the continuum
1s known to possess symmetry about a vertical axis through a column of mass
points. The boundary condition on the right edge of the model (see Fig. 1)
is specified as follows:

Y6 T iy
i=1,2, ..., 6 (10)
Vie T Uil
If an external load is to be applied to the top surface of the

continuum, the model will have equivalent concentrated loads applied at the
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second row of mass points, and the extra top row of mass points will Dbe
neglected completely. If it is desired to.hold the base of the continuum
fixed against displacement,’the bottom row of extra mass points is simply
given a zero displacement.

In problems for which the model is being used to simulate an
infinite half-space, the problem of what boundary conditions to impose on
the left-most column of extra mass points arises. For vertical loadings
which are symmetric about the center line, it has been assumed that the
horizontal displacements of this left-most column are zero and that the
vertical displacements of this left-most column of mass points will be equal
to the vertical displacements of the column of mass points immediately to
the right of this boundary column. When these vertical and horizontal motions
are resolved into displacements in the x and y directions, the boundary con-

ditions become

u. =

i1 (uyp + v3p)

"o

i=1,2, «o., 6 (11)

-

Vi1 T

Cagp + vyp)

These examples indicate the manner in which boundary conditions
are prescribed for the model. A variety of practically significant condi-
tions can be conceived, and several different sets of boundary conditions
were actually investigated during preparation of the numerical examples. An

extensive treatment of the effect of various boundary conditions on the stress

and displacement patterns is beyond the scope of the present work.

2.5 Modification of the Model to Include Interior Rectangular Openings

An example of the adaptability of the model approach to structural

analysis is given in the problem of determining the stress pattern within a
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plane solid around a rectangular opening, which opening may or may not be
reinforced. In the general case, it 1s supposed that the opening is
reinforced. If the opening is to be a cavity only, the modulus of elasticity
of the reinforcing material is set equal to zero.

The reinforcement, if any, in the continuum is replaced in the model
by a system of moment and axial springs. As shown in Fig. 1, the moment
springs are located at the mass points, and the axial springs span from mass
point to mass point in either a vertical or a horizontal direction. By means
of the moment springs, shear forces due to moments in the reinforcing continuum
can be simulated; axial springs simulate the direct tensile or compressive
forces in the reinforcing continuum. Tensile forces in the axial springs are
taken as positive. ©Sign convention for positive moments is basically dictated .

by the requirements for positive shears arising as a result of these moments.

. This sign convention is shown in Fig. 3.

The vertical or horizontal shearing forces acting on each mass
point {depending on whether the mass point is on a horizontal or vertical
reinforcing section, respectively) can be calculated from the dirferences in
the moments acting at three consecutive mass points. Until a moment spring
begins to yield, the moment can be computed directly from the displacements

(Fig. 4) as follows:

M - fi% [(u5u+v3h_) - 2fuggrvys) + (u56+v56):| (12)
where E is the modulus of elasticity of the reinforcing material, modified
for plane strain, and I is the moment of inertia of a unit width of reinforce-~
ment. After a moment spring has reached its yield limit, it is assumed to
hold the yield moment, even though the rotation of the section may increase

considerably.

B s
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The vertical or horizontal axial forces acting on each mass can be
determined as the algebraic difference of the axial springs acting on each
side of the mass point. Until an axial spring yields, the force in a single

axial spring can be computed from the displacements (Fig. 4) as follows:

AR

Fls = \7—;;: [(u56-v56) - (U-BS-V55)j| (15)

wherg A is the cross-sectional area of the reinforcement, E is the modulus
of elasticity of the reinforcing material, modified for plane strain con-
ditions. After an axial spring has reached its yield limit, it is assumed
that the axial force maintains this yield level regardless of the values of
the surrounding displacements.

Once the horizontal and vertical forces acting on a mass point as
a result of the reinforcement are determined, they are resolved into x and
y components and handled in the same way as the forces in the rest of the
solid.

It is evident that a mass point which lies on an interior opening
will have forces acting on it that are different from the forces acting on
a general interior mass point. It is also evident that the forces acting on
mass points which lie on the opening will vary depending on whether the mass
point is on the top, bottom, side, or corner of the opening. For this reason

a set of operators has been developed which computes the forces acting on a

mass point, given the loeation of the mass point.
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ITI. CONSTITUTIVE RELATIONS FROM THE THEORY OF PERFECT PLASTICITY

3.1 General Remarks on the Theory and Its Limitations

Any constitutive rélationships of the theory of plasticity may be

divided into the following three parts: “

(1) stress-strain relations for the elastic region,

(2) yield criterion to define the initiation of yielding,

(3) stress-strain relations for the plastic region.

These three major divisions of the theory will be discussed in turn, after
the associated assumptions and limitations are listed and after a set of
notation that will be useful in the discussion of the theory is introduced.

There are three main assumptions underlying the theory of perfectly

plastic material used in this investigation. These can be stated as follows:

(1) It is assumed that the Mises-Hencky yield condition
accurately determines the beginning of yield. General
considerations of isotropy and symmetry can furnish only
the general form of the yileld condition. Beyond this,
any yleld condition is a hypothesis which only tests can
Justify.

(2) It is assumed that there 1s no permanent volume change. This
assumption, justified on the basis of experimental evidence
for metals, leads to the result that the plastic strain is
equal to the plastic deviator strain.

(3) 'During plastic flow, it is assumed that the deviator strain
rate tensor is proportional to the instantaneous deviator

stress. This is the familiar Prandtl-Reuss pestulate.

-17-
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In addition to these three main assumptions, it is possible to list several
other restrictions on the theory:
(h) The material must be isotropic. This condition is used
in developing the general form of the yield condition,
(5) There is no work hardening, §nd the material follows the
‘stress~strain diagram of Fig, 5 when subjected to simple
tension or compression.
(6) No unloading occurs. Once a stress point has yielded, it
remains yielded under successive incremenfs of external
Load.
(7) Time effects of loading, such as creep, are ignored.
(8) Displacements are small so that the small deformation

theory of elasticity applies.

3.2 Definitions and Notation

The following definitions and notation are introduced for the

purpose of describing the pertinent constitutive relationships used in this

work.
g T T
X Xy Xz
il
al St Tensor = g5 = T o] T (1
Tot. bress Tens v % ya (14)
T T o
Xz ¥z Z
s 0 0
Spherical Stress Tensor = SS‘ = 0 8 0 (15)
0 0 s



t

v ;
H -

]
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s T T
X Xy Xz

Deviator Stress Tensor = SD = T s T
‘ ¥y ya

T T s

where

. 1
s = mean normel stress =% (o_ + 0 + 0 )
3 X hA z

normal x-component of S;D =

s = =0 -5
X X

SY = normal y-component.of SD = Uy - 8
s, = nermal z-component of SD =0, - s

With these notations, it is obvious that

T S

st = g% 4 gl

s +s_+8 =0_+0_+0 =3 =0
X y Z X v Z

Principal normal stresses are designated by cl, 02, g

Principal normal components of the stress deviator are

Sl = O’l - 8
S2 = 02 - S

= - S
s 3

A completely similar notation exists for strains.

1
% 2y
. T 1
Total Strain Tensor = B = =7 €
2°xy Y
1 1
2 7xz 2 7yz

oY PR Y T

(16)

(17)

(18)

(19)
(20)

(21)

(22)

(23)
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e 0 0
Spherical Strain Tensor = ES‘ = 0 e 0
0] 0 e
1 1
°x 27xy B
D 1 1
i p i = = — e —
Deviator Strain Tensor B 5 7xy v 3
1 1
z 7lxz 2 7yz
where
e = mean normal strain = = (e. + e + ¢)
3 7x ¥ z
D
e = normal x-component of B = €, " €
D
ey = normal y-component of E= = ey - e
e, = normal z-component of ED = eZ'- e
With these netations it is obvious that
ET = ES + ED
e +e +e =¢ +ec +€ =-3%=0
X y 4 b'd y Z
Principal normal strains are designated as €15 €5 65,

Principal normal components of the strain deviator are

el = €l - €
82 = 62 - e
e, = €, = €

Xz

¥z

(2k)

(25)

(26)

(27)

(28)
(29)

(30)

(31)
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3.3 Elastic Stress~Strain Relations

In the elastic range the relationship between the elements of the
stress and strain tensors is assumed to be that of Hooke's law, It is con-
venient to express this linear relationship in terms of the elements of the

deviator stress and deviator strain tensors as follows:

s = 2Ge s = 2Ge s = 2Ge
X X y v 2z Z
(32)
TXy = G?’Xy sz = G’)’XZ Tyz = nyz
Oy * O+ 0, = 5K(ex toe, t eZ) (33)

where

¢ = WY (34)

B

K = m (55)

Egs.. (32)( cah be) éxpressed:more -concisely:as

sP = 2aE? (36)

Note that Egs. (32) or Egs. (36) are not six independent relations, since
addition of s + s, + s, = O gives an identity. Accordingly, Eg. (33) is

needed to give a complete statement of Hooke's law.

3.4 Yield Criterion

A yield criterion can be defined as a condition defining the limit
of elasticity under any possible combination of stresses (8), The following

considerations of isotropy and symmetry show what the general form of the
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yield criterion must be. The Mises criterion is then presented and reduced
for the plane strain condition.

Since Hooke's law is presumed to be valid in the elastic range, the
strain at the very first instant of plastic deformation is uniquely determined
by the stresses. Thus for this very first occurence of plastic straining,

the yield condition can be written as a function of the stresses alone.

, T ) = 0 (37)

f(ox, Our Our Ty Typs Tuy

Since the material is assumed to be isotropic, the value of f must not change
if the coordinate axes are rotated. In other words, f must be an invariant
of the stress tensor. The form of f can be further restricted by noting that
mere hydrostatic pressure does not produce appreciable plastic deformation in
metals (8). Therefore f is restricted to be an invariant of the deviator
stress tensor.

Let the deviator stress tensor be referred to its principal axes.

The following three 1inear1y independent stress invariants are then chosen.

Jl =8 + s2 + s5
1,2 2.2 1,2 22 2 2 2 ‘
Iy =5 (sl+s2+s5) =3 SX+Sy+SZ) Ty T T T Ty (38)
1.3 3 3
J5 =3 (sl + 85 s3)

Now. any invariant of the deviator stress tensor can be expressed in terms
of these three linearly independent stress invariants (17)9 But £ is an
invariant of the deviator stress tensor. Therefore it must be possible to

express f from Eq. (37) in terms of J, and JB:

F(J,5 JB) = 0 ‘ (39)
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The yield criterion which is used in this investigation is that

of Mises-Hencky and follows the general form above:
J. -k = 0 (40)

where k is the yield limit in simple shear. Note that this criterion lepends

only on J2. For equivoluminal plane strain conditions, Eq. (hO) reduces to

g -g_ 2
( 5 ) ik TX§ -k =0 (41)

.Eq}*Qﬁlb-ﬁé}ﬁhésfdimfdiﬂbhe>&iéldyéoddition’éc%uallyAuéédlin;théumddelunﬁﬂﬂu

3.5 Plastic Stress-Strain Relations

In order to relate stress and strain in a material which is sub-
mitted to pla;tic flow, it is convenient to express the strain tensor in
terms of elastic and plastic components. Single primes will be used to denote
an elastic component, and double primes will denote a plastic component. Dots
will denote rate of change with respect to increment of external load.

The essential nature of the relations between stress and strain
during plastic flow is contained in assumptions (2) and (3) of section 3.1.
The assumption that there is no permanent change of volume is expressed

mathematically by Eq. (42).

(0]
1

" % (e; + e; + e;) =0 (42)

This implies that the plastic strain deviation is identical to the plastic

strain, or,

e’li - eH e" — €!1 e“ = E" ()_{-3)



stress tensor.

At
- MGVXY

now been presented.

by Egs. (4k4).

- G. '
7 xy

1¢ oGe

X

il' 2Gey
= o0é

Z

i: G&Xy

. G?,XZ
1; ¢5%

Yz

2¢e" =
X

1 taneous stresses.

2Gé!
X

NS
X

$

i

= AT
Xy

X

Xy

2Ge!
X
2e!
y
23é!
zZ
gy !
7xy
Gy !
Xz
VIR
GVyi

2¢é"
v

VIR 1]
G"XXZ

2Gé!
y

v 1
GyXZ

+ 2"
X

+ 2@e&"
¥

+ 2¢e"
+ oy "
+ g "
X2

Son
nyz

-lm

= AS
y

= AT

1

XZ

%
XZ

stress rates by differentiating Egs. (32):

2ge”

'z

5 m
nyz

2Gé!

z

v 1
nyz

+ As
X

+ AS

+ As
Z

+ AT

+ AT

+ AT

Xy

X7

vz

Combining the elastic and plastic strain rates gives

'k, Assumption (3) of section 3.1 states that during plastic flow the
deviator strain rate tensor is proportional to the instantaneous deviator

This is expressed mathematically by Bg. (4k4) below:

= AS
Z

(1)
AT
vz

where N is a proportionality factor. Eqs. (U4) &rejin.the same form as.
the elastic stresé-strain relations given in Egs.(32).

The basic relationships which are assumed during plastic flow have
It 1s now necessary to apply these relations, along with
the yield criterion Eq. (40) and the elastic relations of Egs. (32) and (33)
in order to develop the final relationships between the stress rates

(incremental stresses), strain rates (incremental strains), and the instan-

The plastic strain rates have been expressed in terms of stresses

Similarly, the elastic strain rates are expressed in terms of

(15)
Yz

the total strain rate.

(16)
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Note that these relations apply only during plastic flow, i.e., when

2 .
Jy =k and J, =0 : ' (4

In order to eliminate the proportionality factor N from Egs. (L46),
it is convenient to introduce the notation

W=sgé + sy 8,8 Tt T e Tyz7yz (48)

where W may be interpreted as the rate at which stresses do work during a

change of shape and to note that

(49)

J. =58 +858 +s8 +20 T 420 T +20 1
y P A Xy Xy X2 XZ vz yz

By multiplying the first three of Egs. (L46) by L and the last three

of Egs. (L46) vy ETxy’ CL ETVZ, respectively, and adding, there results

2Gw = 5.8 + xsg + 8§ 4+ hse + 8 8 + xsz
X X X vy N Z z zZ
. 2 . 2 . 2
+ 27T 4 2NT + 2T T + 2AT + 21T T + 2AT
Xy Xy Xy XZ XZ Xz Yz yz NEA
= J_+ h(sg 8 4o 4ot P hor 24 or 2)
2 b'¢ y Z Xy Xz yz
= Jy+ 2nd, (50)
But during plastic flow,
J. = k2 and J. = O (b7)
2 2
Hence,
. 2
OGH = oNK (51)
and,
aw
A= 2 (52)
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- Substituting this value of A into Egs. (46), it is possible to

i;§ solve for the deviator stress rates, which gives the following:
. . . W . . W
6 =o26(é ~—=s_) it =6y, ~—=1T_)
i‘ X X 2k2 b'd Xy Xy k? Xy
' ) : W : W
‘ § = 26(é - —=s_) t =6y, ~=1_) (53)
" v Yy 2k2 v Xz X2z k& X2
. W . W
‘ ; § =026(é ~—5s) t =06 -FT )
! z z 2k2 Z yz yz k2 yz
i To obtain the total stress rates it is necessary to add the deviator
stress rates from Egs. (53) to the spherical stress rate which can be obtained
} by differentiating Eq. (33):
i! s = 3Ké (54)
{i Adding -Bgs. (53) and (54%) results in the total stress rates, as follows:
e e e W . . . W
’ crx=sx+s=2G(eX - — sx)+5Ke Txy‘G(yxy - =5 Txy)
2k k
, G =5 +8=00(& - —H—- s )+3Ké =6y - ﬁ- T ) (55)
‘ vy v Qk? y XZ X2z k2 XZ
) e e e ot W . . W
. oz—sz+s_2G(eZ - 2 sZ)+5Ke— TyZ—G(yyz - X Tyz)

Egs. (55) give the desired relationships between the stress rates, strain

L rates, and instantaneous stresses.

[Py

3.6 An Incremental Form of the Plaéticity Relations for Application to
the Model ‘ '

In general, the application of the plasticity relations to the model

is closely associated with the three stages of material behavior presented in

T

sections 3.3 through 3.5. The applications of Hooke's law and the Mises-Hencky

PR

yield criterion to the model are straightforward, since the strains can be

iy
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computed from the displacements by relations similar to Egs. (1) and the
stresses (or forces) at a stress point can be computed directly from the
displacements by relations similar to Egs. (7). Accordingly, the discussion
which follows is concerned with the development of an incremental form of the
Prandtl-Reuss relations for application to the model.

Egs. (55) are first reduced to an incremental form. Note that for

plane problems the number of relations is reduced from six to three.

Therefore,
AO’ = As -+ AS
X X i
Ao = N3+ As 6
. st Af (56)
o =oy - )
Xy Xy 42w

For plane strain conditions, Egs. (53%) are reduced to

Ds = 2G(Aex --492 sX)
x oK
bs. = 26(0e. - =5 ) (57)
y yoo2 Y
oW
INT = GA - T '
- (7xy N -
and Eq. {54) becomes
As = 3Khe = K(de + Aey) (58)
The incremental W becomes
M = s fe + syAey + s,8e ¥ TXyAVXy (59)
But
s =g -}-(c + 0+ 0 ) (60)
Z z 3 Y'x v 2. .

Where, for plane strain,
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cz=v(ox+cy)
and during plastic flow
Yy = 1/2
Hence,
1 o+
5, =3 (cx + cy) -5 (6. + a0+ —-E—X) =0
Thus,
1 G +cy ax-aX
s, =aX~§(cx+oy+ 5 ) = B
o_+ta@ oI
L N Yo X
s =0 ~=f(o +0 + = - =
y y 3(Y X 2> 2
e, =e -Z (e +e)= “5E
X x 3 'x v 3
EAeX - Ag
be = ——FL
3
e. =e -=(e +e)=2€-€
y ¥ 3 x ¥ 3
20e - Aex
Ne =-—L—-——.—
y 3 .

(61)

(62)

(63)

(6%)

Substituting these values, Egs.(64), into Eq. (59) yields an incremental AW,

which reads,

MW =

(o

i

- 0 )be - A + T A
y)( » ey) v

X Xy~ xy

(65)

Using the expressions for AW, Ae , and s, from Egs, (64) and (65) in BEq. (56),

Aax beconmes
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X 3
1
3 (cx - cy)(AeX‘~ Aey) +.TxyA7xy (ax - cy>]
3 5 XY -
2k
+ K(de + Aey) (66)

Collecting terms gives

¢ -g¢_ 2
Ao Me(u,_@(_}c__&)}
X XL 3 k2 2 ‘

g [ ] )

Similar expressions are obtained for Aqy and Aﬂxy, as folloys:

AT = A M.,_.g_(w)z
y T % 5 2 2

g -0 2
' Ac {M-.ﬁi(_}c__z)]
v 13 2 T3

k
g[Sy ] (68)
Xy kE Xy 2

o o0 - 23] (69)

These last three equations are the incremental relationships with

which the incremental stress components in a plastie region are computed.
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These incremental stress components are added to the existing stress components
at a stress point to obtain the total stresses acting at a ylelded stress point.
In order to compute the quantities;Aex, Aey, Ayxy which appear in
Eags. (67) through (69), two sets of displacements corresﬁonding‘to two con~
secuﬁive load levels are required. One set of displacements is the set which
is being generated for the current level of external load; the other set is
that computed for the previous external load level. The quantities‘Aex, Aey,
Avxy are computed as the differences in strains determined from these two sets

of displacements.
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IV. GSYSTEMATIC RELAXATION PROCEDURE FOR DETERMINING DISPLACEMENTS

.2 Preliminary Remarks

When a problem in continuum mechanics is replaced by a correspond-
ing problem in particle mechanics involving a discrete model, the question
of how to determine the equilibrium displacements in the model arises.

Perhaps the most obvious solution is to write and solve the set of simultaneous
linear algebraic equations (equations similar to Eq. (8)) for the unknown
displacement components ug and Ve Such an approach has significant dis~
advantages, however; The preparation of the equations, whether it be done by
hand or by an intricate program for the computer, involves a considerable
amount of labor. In addition, even with machines as large as the IBM 7090

the number of equations which can be solved by the standard library subroutines
is limited to about 150. And perhaps most important, the changes in the
coefficients for the displacements resulting from yielding of one or more
stress points are not at all easy to determine.

A more flexible and practical approach to the problem is the
relaxation procedure described below. Such an approach eliminates completely
the preparation of simultaneous equations, and can handle a very large
number of displacement components {of the order of several thousand). .An
additional advantage of the relaxation method is the physical meaning that
can be attached to each step of the procedure. This is of coﬁsiderable help

in determining plastic stresses and strains.

k,2 The Relaxation Procedure

The relaxation procedure used for determining the displacements

can be graphically summarized by means of the flow diagram presented in Fig. 6.

~3] -
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All mass points of the model are initially in equilibrium with zero displace-
ments and no external load. The first increment of external load is then
applied to the boundary mass points (or other specified mass points), thus
destroying the equilibrium of the loaded mass points. The following opera-
tions are then performed for each mass point of the model.

The forces acting on a mass point are determined as follows.

.External forces acting on the mass point are given as a part of the loading

patterﬁ applied to the model. Internal forces, originating at the stress
points, are determined uniquely in the elastic range from the displacements
surrounding the stress points by equations similar to.Egs. (7). After a
stress point has yielded, the force components at that stress point are
determined both by the surrounding displacements and the past history of that
particular stress point. Incremental plastic forces are determined from the
incremental plastic stresses given by Eqs. (67), (68), and (69). These
inctemental plastic forces are then added to the last set of equilibrium
forces at the stress point to obtain the current total plastic forces acting
at the yielded stress point.

-After the forces acting on a given mass point are determined, a
summation of all the forces acting in the x direction is made. In general,
this will result in a residual force which is an indication of the amount
by which the mass point is out of equilibrium in the x direction. The mass
point is then displaced through a small distance in the x direction equal
to the product of the residual and a flexibility coefficient.

Similar operations are performed for the y direction. This places
the current mass point in equilibrium,  though in general it will destroy the
equilibrium of surrounding mass points by a small amount. The procedure is

repeated for each mass point until every mass point has been moved once in
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the x direction and once in the y direction, thus completing one cycle of
relaxation.

After every relaxation cycle, each mass point is inspected to
determine if it i1s in equilibrium. If not, the relaxation process is repeated
until all mass points are in equilibrium to within a prescribed allowable
error. When all mass points are in equilibrium, then all the stress points
are inspected for yielding by the Mises-Hencky yield criterion, Eq. (41), and
the yielded regions are recorded. All the displacements and stresses for the
equilibrium configuration just obtained are also recorded. If desired, the
external load is given a new increment and the complete procedure is repeated
for each load increment in order to trace the development of plastic yielding
from one stress point to another. The following example demonstrates the

manner in which the computations are performed.

4.3 A Computational Example

Consider the elementary example shown in Fig. 7. Only mass points
"43" and "53" are free to move; duelto symmetry about a vertical line through
these mass points, the u and v displacements at a mass point are equal:

Y43 Vi3

u = Vv

25 23

(70)

Hence there are only two unknown displacements in the problem, u16 and u55.
Using the material constants, dimensions, and loading shown in Fig. 7, it is
possible to write twe simultaneous linear algebraic equations (similar to

Eq. (8)) for the elastic behavior of the system in terms of the two unknowns,

uhB‘and u55. Solution of these two equations yields
- - =3
uh3 = v45 = 1.010 x lO-5 inches (71)
u53 = v55 = .252 x 10 inches
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Converting these displacements to elastic stress components by means of

Egs. (7) and (4) gives

ci = -.7857 ksi o = -.2143 ksi

a; = -.O7L4 ks a‘; = -.071lh ksi (72)
7 & = -.2143 ksi T M - 071k ksi

xy xy

These values will now be used to measure the progress of the relaxation
procedure.

Before beginning the systematic relaxation precedure, it is first
necessary to convert external pressures to concentrated loads for application
at the mass points and to determine the flexibility coefficients for each
mass point. For example, if an external vertical pressure of 1 ksi is acting
on the top surface of the model shown in Fig. 7, the concentrated vertical
force acting on mass point "U3", which arises from this pressure acting over

a distance of A/2 = 1/2 inch on either side of mass point "43", is

il

1t

(1 ksi)(-é— + %")(1“) =1 kip (73)

Lyl
1l

where the thickness of the model is taken to be one inch. This vertical
force is then resolved into components in the x and y directions for applica~

tion at mass point "43":

P

.707 kip
* (74)

P 707 ki
v 107 kip

The flexibility coefficient for a mass point is obtained from a consideration
of the effect of a unit force acting on the mass point. For example, a unit
external force of one kip applied in the x direction at mass point "43" is

resisted by internal force components acting at stress points "a" and "p."
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. R
External Load = 1 kip = (Fx + SXy (75)

Expressing‘Fi and Sx; in terms of displacements by means of equations similar

to Egs. (7) and noting that all displacement components except uuz are held

fixed gives.

E T3y 8 E BN
L= - ey D 2wy ) 3 (76)

Solving Bg. (76) for U3 yields the flexibility ceefficient in the x direction:

b3 (1) (1-2y ‘
w7 - M) (77

Because of the symmetrical arrangement of the force components acting on mass

b3

point "43Y}, the flexibility coefficient in the y direction is equal to £

43 b3 W(1ay)(1-2y)
Ly 7=t = (3-kv)E (78)

A similar derivation gives the flexibility coefficients for mass point "53":

55 o 53 _ 2(1+v)(1-2v) A
£77 =277 = _L_(TT— {3_ ol (79)

If E and v take on the values 1000 ksi and 0.25, respectively, as shown in

‘Fig. 7, then these flexibility coefficients become

fXLLB = fylFB = .001250 inches/kip
(80)
fx55 = fy55 = .000625 inches/kip

With these values for the concentrated external loads and flexibility
coefficients, it is possible to begin the relaxation procedure. The following

step numbers make reference to the flow diagram of Fig. 6.
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Operation
Set u45 = v45 = u53 = v55 = 0. Also set force components

Apply the increment of external load to mass point "L43",

Px = .T07 kips
P = .707 kips
y TO7 kip

Begin with mass point "h3".

Qv

No stress point has yet yielded, since all stregs components

are initially = O. Go to 5b.

On the first cycle all force components are computed as
zero, since no mass point has yet been moved.

On the first cycle, only external forces are non-zero.

Hence,

1]
lav]
1

}:F& " +.707 kips

F =P +.707 kips
}: ¥ ¥ 707 kip

New uyz = old ujz + fX“5 éZJFX)

1
1l

.88h x lO_B‘inches

U5 = 0 + .00125 (.707)

Similarly,

vys = 0+ 00125 (.707) = .88k x 107 inches

Note that these displacements of mass point "43" destroy
the equilibrium of mass point."53".

The current mass point, "43", is not the last mass point.

Go to 9.

Take mass point "53%, Got to L.

Again no stress point has yielded, since yielding can occur

only after an equilibrium configuration has been reached.

Go to Sb.
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Step Operation
5b Force components at stress points "a" and "b" are computed

from Egs. (7), taking account of the evanescence of all

=v__. Note

3 = Vi3 Y53 T Vo3

that only those components acting on mass point "53" are

displacement components except ulL

computed.
o= 5 (2-v) 2 v Zle
vy (ly)(1-2y) o) 5 |2

- (1+.2§?%g-.50) [(l"25)(0) - -25(-000884)] %

= -.177 kips
s 22| 2
S}Q’*-—el_‘_v.[g’ o | 2
1000 1 '
= m [O - .0008814-] -2— = -,-.1_77 k_lps
u v .

Y ey |0 2 v 2 |3
F.X T (lev) {12y [(l v) 5 V5 jl )

1000 T3
= (T+.25)(1--50) [(1”25)(0? - -25(0000884):] :
= - 177 kips

b__ B Y3 Vs3] B
Sy T 20) {_ 5 " ’Eé] 5
1000 1 .
5(1+.25 [" +00088k -+ O:l 5= - .177 kips

Note that for the first cycle, mass point.'53" has not yet

been moved. Hence u = v., = 0 and all force components

25 25
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Operation
at "m" and "n" = 0. From considerations of symmetry, it can

also be concluded that

Fa - fb
¥y X
g a _ S b
Xy Xy

The equality of the shearing forces and the axial forces at a
stress point on this first cycle is purely coincidental.
‘Following the sign convention of Fig. 2 for positive

forces,

E:F‘ - s ? g P ™
X Xy X Xy X

=+ 177+ A77 + 0 + 0 = + 354 kips
E:F‘ - TLI -
v y ¥ Y xy
=+ 177 + .177 + O + 0 = +.35k kips

N e 432
New Ugy = old ugs + £, (. FX)

Uy = 0 + 000625 (.354) = .221 x 1077 inches
Similarly,
Vs = 0 + .000625 (.354) = .221 x 1077 inches

Note that these displacements of mass point "53" destroy
the equilibrium of mass point "L43".
This is the last mass point and the end of the first cycle

of relaxation. Go to 10.

All mass points are not in equilibrium, since the displace-

ments u_, and v_, under step 7 above destroyed the equilibrium

53 25

of mass point "43". Hence there must be a second cycle of
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relaxation, beginning at step 3. Note, however, that in only
one cycle of relaxation the displacement components have

attained nearly 90 percent of their final values.

" 2The opérations listed above demonstrate the procedure for elastic
behavior. Suppose that a sufficient number of relaxation cycles has been
performed to bring both mass points to within an acceptable error in the
equilibrium equations. The following discussion indicates how the yield
criterion is applied (step 11 of Fig. 6) and how the force components at a
yielded stress point (step 5a of Fig. 6) are computed,

To illustrate the application of the yield criterion, assume that

the yield stress in simple tension for the material is 35 ksi. Then the yield

stress in simple shear is

c_. 2 2c 2
W o (R - () - 506 (1)

w1

Applying the yield criterion, Eg. (41), to stress point "a" gives

2
(27856 + 0Ty | (_ o140)2 | 306 < 0

2
(82)
0.174 - 306 <0
and to stress point "m® gives
2 2
(:;2&&.%;91&) + (-.071) - 306 <0
(83)

0.010 - 306-< 0

Obviously both stress points are far from yield at an external pressure of
only 1 ksi. Indeed, first yielding will take place at stress point "a" at

an external vertical pressure of
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/ -%%% 1 ksi = U2 kst (8k)

Note that this value of external stress is considerably greater than the
yield stress in simple tension or compression of 35 ksi assumed for the
material. This is characteristic of failure or yielding in two dimensional
stress systems, and will be evident again in the numerical problems presented
in Chapter V.

Until the load level has reached 42 ksi, all stresses and displace-
ments increase linearly. When this elbstic limit has been reached, the corre-

sponding displacements and stresses are 42 times those of Egs. (71) and (72):

b.2h2 x 107 inches

1_]_43 = ’V'll-5 =
-2

u_, = v_, = 1,058 x 10 © inches

53 = 's3 2

a . m .
cx = =33.00 ksi Gx = =9.00 ksi
o> = -3.00 ksi o = -3.00 ksi (85)

¥ Y

a m

= -9,00 ksi T = -3,00 ksi

Ty 9 - 3

These values are recorded, and are used to determine the total displacements
and stresses for the first load increment above the 42 ksi load level.

Suppose now that the load level is increased to five percent above
this elastic limit, i.e., to 1.05 (42) = Lh4.1 ksi. As a first approximation
to the final displacements at this new load level, the displacements of

Egs. (85) are also increased by five percent.

_2'
u45 = V3 = L. L5k x 10 © inches (86)

U., =V 1.111 x 10°2 inches

53 53
Note that two sets of displacements are available: the last set of equilibrium

displacements, Egs. (85), and the current set of displacements, Eqs. (86)
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(which in general are pot compatible with the condition of equilibrium). These
two sets of displacements are necessary.in order to compute the incremental
plastic stress components according to the discussion in section 3.6.

In order to compute the incremental plastic stress components, it
is necessary to compute first the strains at the stress point "a", for both

levels of external load, by Egs. (1):

.For -lead levyel = 42 kai:

a _ 43 .Okohp
& "% =7 TTaag - ~+03000
a V53 01058
& = 5 = TT.aag - +00TH
y e Ys37Vys 01058 - .0k2ke
- TFc T,k
= -.02252 (87)
For load level = 4h.2 ksi:
a _ .oLhsh
& =TT T --05150
a 01111
§ = - +.00786 (88)
a . .01111-.0Wh5k
Ty = 1.1k = -.0236k

The incremental strains in-Egs. (67), (68), and (69) are obtained by

_subtracting Egs. (87) from.Egs. (88):

Aex = -.03150 +.03000 = -.00150
Agy =  .00786 ~.00749 = +.00037 (89)
Ayxy = =,0036L +.02252 = -.00112
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Before computing on, Auy, and‘éﬂxy, it is convenilent to compute the numerical

values flor G and K:

oo B _ 1000
T 2(1+y)  2(1+.25
K - i _ 1000

3(1-2v) — 3(1-.50)

Note that instantaneous values of the
Egs. (67), (68), and (69) in order to
ponents. For small increments in the
stresses are very nearly equal to the

configuration, Eqs. (85).

)=)+OO

(90)
= 667

stress components are required in
compute the incremental stress com-
external loading, the instantaneous

stresses at the last equilibrium

Substitution of Egs. (85), (89), and (90) into Egs. (67), (68),

and (69) gives the following:

Javed

-+

‘ 2 2
(-.coa50) [HLH0VAEET) _ 109 (33137

3

2

(.00037) ['2(“002;5(6é72+ %g% (223 }

+

=.90 ksi

i

(-.00112) ['”?2&@91 ('53+5)]‘

2

a
ag] (-.00150) [

+

+

: =,90 ksi

(-~.00112) [%%%

-2(400)+3(667) , 400 (-55+3)2]
; 2 |

306

i ‘ 2
(.00037) [4§400);§(661) oo (2313 }

306
(o1)

(-9)222) |
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Am*? = (~.00150) E:%%% (-9)(52%i2)]
- Cooos) | 498 (-9)(223) |
+ (-.00112) [uoo (G A;C 2)}
=0

Two important observations can be made immediately from inspection
of Egs. (91). First, the stress components at the yielded stress point "a"
are not increasing linearly. Second, the stresses at the yielded stress
point "a" are increasing in such a fashion that the yield condition, Eq. (kl),
remains satisfied. This is a consequence of the fact that the yileld conditieon
is used to eliminate the factor of proportionality A in the Prandtl-Reuss
plastic stress-strain relations, Egs. (L44).

To obtain a first approximation to the stresses and forces at

stress point "a" at the load level Lk4.l ksi, it is necessary to add the

incremental stresses, Eqs. (91), to the last set of stresses, Eas. (85):

a _ : a_ asd _ -

o = -.90-33.00 = -33.90 ksi F =0 7 =-25.95 kips

a . ad _ - :

gy = =:90- 3.00 = - 3.90 ksi F? =0 5 =" 2.76 kips (92)
a . a _a & _ .

Ty = 0 - 9.00 = - 9.00 ksi sxy R 6.36 kips

Egs. (93) correspond to step 5a in Fig. 6, wherein the forces acting
at a yielde& stress point are computed. Once these "plastic" forces are known,
the relaxation technique proceeds in the same manner as before. . For example,

summing forces acting on mass point "43" gives the result

8 b .
% P = PX+FX+SXy = +%1.20~23.95-6.36 = +0.89 kip: (95)
b a
=P 4+F+8 ° = 20~23%,95-6.36 = .09 ki
% F, = P F S +31.20-23.95-6.36 = +0.89 kip
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Hence the second approximation to the displacement of mass point ."43" is
obtained by.adding Eqs. (86) to the ineremental displacements resulting

from the unbalanced forces of Egs. (93):

T

Uy L0445 + .00125(,89) = .OU56 inch
(9k)

.04h5 + ,00125(.89) = .0456 inch

where .00125 is the flexibility coefficient, Eq. (77), for mass point "Lz"!
Accordingly, one observes that the displacements, as well as the stresses,
are no longer linear functions of the external load after plastic ylelding

has begun.

© e



V. THE NUMERICAL PROBLEMS

5.1 Problem l: A Comparison of Theoretical and Model Solutions

Problem 1, shown diagrammatically in Fig. 8, is presented in order
to demonstrate the measure of accuracy obtainable with the model used in
this investigation. The theoretical solution is obtained from that given by
Timoshenko (21) for a single concentrated load acting vertically on the sur-~
face of a half-space. To obtain the approximate theoretical solution for
the linearly distributed vertical pressure shown in Fig. 8, the effects of
seven concentrated loads, located symmetrically with respect to the vertical
center line, are superposed.

As an approximation to the semi~infinite half-space of the theo-~
retical solution, the following boundary conditions are used for the model.
The left boundary is assumed to have a zero horizontal displacement and a
vertical displacement equal to that of the material spaced a horizontal
distance X;from the left boundary. The lower boundary is assumed to be
completely fixed. The boundary on the right is established as a line of
symmetry. These boundary conditions are indicated graphically in Pig. 8.

It should be recognized that these boundary conditions on the left edge and
at the base of the model only approximate the true boundary conditions in
the half-space. Accordingly, exact agreement between the theoretical and
model solutions cannot be expected, especialiy in the regions near the
boundaries.

The basic solution obtained from the model is a set of displace-
ments and stresses in the x and y directions oriented as shown in Fig. 1.
For presentation, however, all displacements and stresses are resolved into

horizontal and vertical components. Figures 9, 10, and 11 give these

-45.-
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displacement and stress components for Problem 1. The displacement components
within a square refer to the displacements of the mass point located at the
upper left corner of the square. The stress components refer to the stresses
at the stress point located in the center of the sguare.

To facilitate comparison of theoretical and model sclutions, plots
of the vertical stresses and displacements at various depths in the half-
space are given in.Figs. 12 and 13, and a plot of vertical deflections at
the center line is given in Fig. 14. Note the very good. agreement of the
two solutions for vertical stresses in Fig. 12. Only near the lower boundary
is there any observable difference between model and theory; this difference
most likely arises from the different boundary conditions along the lower
boundary for the two solutions. The pattern of vertical displacements
(Fig. 13) appears quite reasonable, and the comparison of these deflections
at the center line with the corresponding theoretical solution (Fig. 1k4)
shows a good agreement in the pattern of the deflections, with only minor
discrepancies in the magnitudes of the deflections. Again, this difference
in the magnitudes of the deflections obtained from the model and from the
theory of elasticity is attributed to the differences in the boundary condi-
tions for the ﬁwo solutions, particularly the condition along the lower

boundary .

5.2 Problem 2: Notched Bar Under Tension

As an example of a type of problem in contained plastic flow which
can be solved using a discrete model and a systematic relaxation procedure,
a bar with a long rectangular notch, or slit, is shown in Fig. 15. In the
finite model, the notch actually has a width of A, though for practical

purposes the notch may be thought of as having infinitesimal width. A
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uniform tension is applied at the upper edge of the bar, the left edge of
the bar being free of external stress. The bar is assumed symmetrical
about a vertical axis through its center and symmetrical about a horizontal
axis through the notch. Hence the boundary conditions, on the right and
lower edges of the bar are those of zero shear on the boundaries and zero
displacement perpendicular to the boundaries.

As mentioned earlier, the basic solution obtained from the model
ig a set of displacement and stress components. However, once successive
sets of displacements are known, the stresses can be computed. Further, it
has been observed that the general pattern of stresses does not vary. appreci-
ably as the level of external loading is increased, even though portions of
the material may be undergoing plastic flow. Accordingly, only the basic
solutions in terms of displacement components (Figs. 16-19) are given for
each load level above the load level which initiates plastic yielding. For
this elastic limit load level (Uel), a complete set of stress components
is given in Figs. 20 and 21, and plots of the vertical stresses and vertical
displacements for various depths at this load level are given in Figs. 22
and 23,

In the discussion of problems in contained plastic flow, a very

useful concept is that of an "equivalent shear stress", defined as follows:

L
- g_-a_ 2 5
Equivalent Shear Stress = ;/J‘2 = (-%—X') + T}'cy (95)

Note that this is actually the largest shear stress existing on any plane
passing through a given point at which cx,ay, and Txy are defined. If this
equivalent shear stress is divided by the yleld stress in simple shear, k,
the ratio represents the percentage of the yield capacity of the state of

stress at a given point. Figures 24, 25, and 26 present values of the
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‘load is increased to‘l,46ae
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equivalent shear stress, expressed as a percentage of its maximum value k,

for three levels of external load: ¢ leh6cel, and 1'58061’

el’

It is of some interest to trace the development of the yielded
region as the level of external load increases. The first stress point to
yield is the one at the very end of the notch (Fig. 24). It is of signifi-
cance (Fig. 20 or 22) that the vertical stress component at this stress
point when yielding begins is 47.4 ksi -~ considerably greater than the
assumed yield limit of 35 kei in simple tension or compression. As mentioned
previously, this is characteristic of yielding in two-dimensional stress
systems; the yield condition depends upon a gpmbipation of the stress
components rather than on the value of any single component.

To be strictly correct, the external lead increments after this
first stress point has yielded should be applied in very. small increments.
Initial investigations indicate, however, that the displacements and stresses
are very nearly linear between yielding of two successive stress points,
particularly if the yielded region is of small extent. Hence the next two
stress points were yilelded by relatively large increments of external load.

‘At an external load level of 1.22¢ the second stress point,

el’
immediately a@bove the first yielded stress point, begins to yield. -As the
1> & third stress point yields (Fig. 25). Note
that the yielding is not taking place along a horizontal line at the waist

of the specimen, as one might at first be led to expect, but 1s progressing
vertically upward and to the right. The material has now been highly enough
stressed so that only a small increase in external load is necessary to
propagate the yielded region completely across the bar (Fig. 26). In problems

of this type which involve local cenc¢entrations of stress, the.specimen' can

actually withstand a considerably greater external stress than that causing
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initial local yielding. Figure 27 summarizes the preogression of plastic
yielding at several levels of external load.

This pattern of plastic yielding shows remarkably good agreement
with results presented by Jacobs (11), who used a modified stress function
approach and a relaxation technique developed by. Allen and Southwell (1).

As Allen and Southwell (1) have remarked, this type of plastic yielding may
indicate the mechanical behavior behind the type of fracture commonly known
as "cup and cone®. The first stages of failure may involve slipping along
planes at roughly 45 degrees to the vertical. Eventually the tensile stress
across the elastic portion of the waist of the specimen becomes great enough
to cause a breakdown in cohesion, resulting in a horizontal tensile fracture
across the reduced waist of the specimen.

Figure 28 illustrates graphically that displacements are no longer

‘linear functions of the applied lbading after plastic yielding has begun.

Load deflection curves are given for mass points located at "a", "b", and

11 1"

c" of Fig. 15. .Mass point "a" is immediately above the end of the notch;
mass points "b" and "c" are at a horizontal distance A/2 from the vertical
center line and at vertical distances 5-1/2 A and 2-1/2 N\ from the horizontal
center line, respectively. Note that the load deflection curves differ,
depending on the.location of the mass point, and that the load deflection

curve for the material within the elastic core at the center of the specimen

(mass point "c¢") remains nearly elastic.

5.3 ‘Problem 3: ‘A Partially Loaded Half-Space

As a second example of a problem in contained plastic flow, the
problem of a partially loaded half-space is shown in Fig. 29. Such a problem
might represent the effect of a footing on soil, or a machine part bearing

against another part of much larger dimensions.
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The boundary conditions for the problem are the same as those for
Problem 1, and the elastic sclutions, Figs. 30 and 34 through 37, is quite
gimilar to the elastic solution of Problem 1. Preliminary investigation of
plastic yielding under the triangular loading of Problem 1 indicates quite
-different yield patterns for the two problems, however. It might be mentioned
at this point that the loading pattern shown in Fig. 29 purposely introduces
the linearly varying stress distribution at the left edge of the loading
pattern. This type of external stress distribution reduces significantly
the oscillétion in displacements and stresses which occurs in the model solu-
tion if the external stress distribution drops abruptly -from a finite value
to zero.

The concept of an equivalent shear stress is again used as a
measure of the closeness to yield. Figure 38 shows values of this equivalent
shear stress as a percentage of its maximum value k for the elastic load
limit (cel) which initiates plastic yilelding. .In marked contrast to the
Jlarge increments of external lead demanded by Problem 2 in order to yield a
second. and third stress pﬁint, it was found that only. a small increase of
two percent of the elastic limit leoad was required to initiate yielding at
several other stress points. An increase of six percent (Fig. 39) in the

external 1oading_ce extended the yielded zone over a cilrcular arc which

1
almost intersected the surface of the half-space. Figures 30«33 give the

basic solutions in terms of displacements for each load level, and Fig. U4l
summarizes the progression of plastic yielding at these load levels. This
pattern of plastic ylelding under a partial load agrees very well with the
trajectories of maximum shear under a footing given by Jurgenson (12).

Note again (Fig. 36) that there are regions within the material

where a single component of stress (vertical stress immediately beneath the
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load, for example) can have a value considerably greater than the yileld stress
of 35 ksi in simple tension or compression.
The non~linear relatlion of load and displacement at specific points
within the material is also evident in this problem. The load-deflection
not

curves for the three mass points "a", "b", and "c¢" of Fig. 29 are shown in

Fig. - 41. All three mass points are on the vertical center line; "a" is at

.the surface, and "b" and "c" are at depths of 5\ and 8\ below the surface.

“a", departs greatly from the linear behavior, since

The surface mass point,
it feels the cumulative displacements of all the material beneath. Mass
point "b" is located within the yielded zone and also shows a non-linear
behavior. Mass point "c¢" is beneath the yielded zone and exhibits even less

than linear deflections. This seems to indicate that the increments in

external load are not being transmitted directly through the yielded zone,

but rather are being carried around this zone by a redistribution of the

stresses.



VI. SUMMARY.AND CONCLUSION

The object of the thesis is the development of a numerical pro-
cedure for the solution of problems in contained plastic flow of plane
continva. To accomplish this, a discrete model is intreduced to replace
the physical continuum. The equations governing the behavier of the model
are shown to be identical with a set of finite difference -equations for the
differential equations governing the plane continuum.

The Mises~Hencky yield criterion and the Prandtl-Reuss stress-
strain relations for plastic straining are given, and a finite form of these
relations is developed for application to the model. A systematic relaxation
technigue for the computation of displacements and stresses within the model
is developed. The relaxation technique applies to both elastic and plastic
behavior, and is well adapted for use on large, high-speed computers.

Three numerical example problems are solved by means of the
relaxation procedure. The first example indicates the measure of accuracy
obtainable using the model. The last two examples illustrate the application
of the procedure to problems of plastic straining.

Results of the example proﬁlems indicate that the numerical pro-
cedure developed herein can be used successfully -for-the solution of a

wide range of interesting and practical problems in centained plastic flow.

-52~
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FIG. 6 FLOW DIAGRAM FOR RELAXATION PROCEDURE
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